Energy management strategies comparison for electric vehicles with hybrid energy storage system
نویسندگان
چکیده
This paper deals with the real-time energy management strategies for a hybrid energy storage system (HESS), including a battery and a supercapacitor (SC), for an electric city bus. The most attractive advantage deriving from HESSs is the possibility of reducing the battery current stress to extend its lifetime. To quantitatively compare the effects of different control strategies on reducing battery degradation, a dynamic degradation model for the LiFePO4 battery is proposed and validated in this paper. The battery size is optimized according to the requested minimal mileage, while the size of SC is optimized based on the power demand profile of the typical China Bus Driving Cycle (CBDC). Based on the optimized HESS, a novel fuzzy logic controller (FLC) and a novel model predictive controller (MPC) are proposed and compared with the existing rule-based controller (RBC) and filtration based controller (FBC), after all the controllers are tuned to their best performance along the CBDC. It turns out that FLC and RBC achieve the best performance among the four controllers, which is validated by the DP-based result. Furthermore, about 50% of the HESS life cycle cost is reduced in comparison with the battery-only configuration. In addition, the controllers are also compared along the New European Driving Cycle (NEDC), which represents another normalized driving cycle. The results show that the RBC, MPC, and FLC achieve a similar performance, and they reduce about 23% of the HESS life cycle cost when compared to the battery-only configuration. The RBC and FLC are regarded as the best choices in practical applications due to their remarkable performance and easy implementation. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Detailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence
As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملA new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps
In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...
متن کاملModified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles
Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) wi...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملManagement of electric and thermal energy consumption in residential building
In residential section, Studies have shown that, along with the use of various household consumption management techniques, the so-called hubs of energy can also be used to improve the performance and management of home energy management. In each electrical energy system, customers are aiming to minimize their energy costs. In this paper, it can be seen that in each home a home-made residential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014